Barbari, S.R. Functional characterization of cancer-associated DNA polymerase ε variants. Ph.D. thesis, University of Nebraska Medical Center (2021). https://digitalcommons.unmc.edu/etd/600/
Barbari, S.R. et al. Enhanced polymerase activity permits efficient synthesis by cancer-associated DNA polymerase ε variants at low dNTP levels. Nucleic Acids Res 50, 8023-8040 (2022). https://pubmed.ncbi.nlm.nih.gov/35822874/
Barbari, S.R., Kane, D.P., Moore, E.A. & Shcherbakova, P.V. Functional analysis of cancer-associated DNA polymerase ε variants in Saccharomyces cerevisiae. G3 (Bethesda) 8, 1019-1029 (2018). https://pubmed.ncbi.nlm.nih.gov/29352080/
Dahl, J.M. et al. Probing the mechanisms of two exonuclease domain mutators of DNA polymerase ε. Nucleic Acids Res 50, 962-74 (2022). https://pubmed.ncbi.nlm.nih.gov/35037018/
Esteban-Jurado, C. et al. POLE and POLD1 screening in 155 patients with multiple polyps and early-onset colorectal cancer. Oncotarget, 8, 26732-26743 (2017). https://pubmed.ncbi.nlm.nih.gov/28423643/
Fazlieva, R. et al. Proofreading exonuclease activity of human DNA polymerase δ and its effects on lesion-bypass DNA synthesis. Nucleic Acids Res 37, 2854–2866 (2009). https://pubmed.ncbi.nlm.nih.gov/19282447/
Fortune, J.M., Stith, C.M., Kissling, G.E., Burgers, P.M.J. & Kunkel, T.A. RPA and PCNA suppress formation of large deletion errors by yeast DNA polymerase δ. Nucleic Acids Res 34, 4335–4341 (2006). https://pubmed.ncbi.nlm.nih.gov/16936322/
Galati, M.A. et al. Cancers from novel Pole-mutant mouse models provide insights into polymerase-mediated hypermutagenesis and immune checkpoint blockade. Cancer Res 80, 5606-5618 (2020). https://pubmed.ncbi.nlm.nih.gov/32938641/
Herzog, M. et al. Mutagenic mechanisms of cancer-associated DNA polymerase ε alleles. Nucleic Acids Res 49, 3919-3931 (2021). https://pubmed.ncbi.nlm.nih.gov/33764464/
Hodel, K.P. et al. POLE mutation spectra are shaped by the mutant allele identity, its abundance, and mismatch repair status. Mol Cell 78, 1166-1177 (2020). https://pubmed.ncbi.nlm.nih.gov/32497495/
Jin et al. The 3’ →5’ exonuclease of DNA polymerase δ can substitute for the 5’ flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability. Proc Natl Acad Sci USA 98, 5122-5127 (2001). https://pubmed.ncbi.nlm.nih.gov/11309502/
Kane, D.P. & Shcherbakova, P.V. A common cancer-associated DNA polymerase ε mutation causes an exceptionally strong mutator phenotype, indicating fidelity defects distinct from loss of proofreading. Cancer Res 74, 1895-901 (2014). https://pubmed.ncbi.nlm.nih.gov/24525744/
Labrousse, G. et al. The hereditary N363K POLE exonuclease mutant extends PPAP tumor spectrum to glioblastomas by causing DNA damage and aneuploidy in addition to increased mismatch mutagenicity. NAR Cancer 5, zcad011 (2023). https://pubmed.ncbi.nlm.nih.gov/36915289/
Lee, M. et al. Homologous recombination repair truncations predict hypermutation in microsatellite stable colorectal and endometrial tumors. Clin Transl Gastroenterol 11, e00149 (2020). https://pubmed.ncbi.nlm.nih.gov/32352724/
Li, H.D. et al. A PoleP286R/+mouse model of endometrial cancer recapitulates high mutational burden and immunotherapy response. JCI Insight 5, e138829 (2020). https://pubmed.ncbi.nlm.nih.gov/32699191/
Li, H.D. et al. Polymerase-mediated ultramutagenesis in mice produces diverse cancers with high mutational load. J Clin Invest 128, 4179-4191 (2018). https://pubmed.ncbi.nlm.nih.gov/30124468/
Ma, X. et al. Functional landscapes of POLE and POLD1 mutations in checkpoint blockade-dependent antitumor immunity. Nat. Genet. 54, 996-1012 (2022). https://pubmed.ncbi.nlm.nih.gov/35817971/
Ostroverkhova, D. et al. DNA polymerase ε and δ variants drive mutagenesis in polypurine tracts in human tumors. Cell Rep 43, 113655 (2024) https://pubmed.ncbi.nlm.nih.gov/38219146/
Shcherbakova, P.V., Noskov, V.N., Pshenichnov, M.R., Pavlov, Y.I. Base analog 6-N-hydroxylaminopurine mutagenesis in the yeast Saccharomyces cerevisiae is controlled by replicative DNA polymerases. Mutat. Res., 369, 33-44 (1996). https://pubmed.ncbi.nlm.nih.gov/8700180/
Shinbrot, E. et al. Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication. Genome Res 24, 1740-50 (2014). https://pubmed.ncbi.nlm.nih.gov/25228659/
Shlien, A., et al. Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. Nat Genet 47, 257-262 (2015). https://pubmed.ncbi.nlm.nih.gov/25642631/
Xing, X. et al. A recurrent cancer-associated substitution in DNA polymerase ε produces a hyperactive enzyme. Nat Commun 10, 374 (2019). https://pubmed.ncbi.nlm.nih.gov/30670691/